
Model-Driven Development of SOA Services

Christian Emig, Karsten Krutz, Stefan Link,
Christof Momm, Sebastian Abeck

Cooperation & Management, Universität Karlsruhe (TH), Germany

{ emig | krutz | link | momm | abeck } @ cm-tm.uka.de

Abstract. Service-oriented architectures (SOA) will form the basis of future information systems.
Basic web services are being assembled to composite web services in order to directly support
business processes. As some basic web services can be used in several composite web services,
different business processes are influenced if for example a web service is unavailable or if its
signature changes. Yet the range of such a change is often ambiguous due to a missing overall SOA
service model pointing out the influence of services on business processes. In this paper we present a
SOA service model defined as a UML-based metamodel and its integration into a model-driven
service development approach. In contrary to existing approaches we explicitly address deployment
issues

Problem Statement

With the evolution of service-oriented architecture (SOA) the focus in software development changes
from applications to reusable services. These (atomic) services that offer coarse-grained functionality
required for accomplishing the business processes and are then being assembled in a process-oriented
way to composite services implementing fully automated and reusable parts of business processes
[AH+03, LR02]..This approach allows for flexible adjustments in quickly changing business processes.
Web services with the Web Service Description Language (WSDL) for interface description and SOAP
as communication protocol are the most promising technologies for the implementation of SOA, but also
other technologies like for instance CORBA are conceivable.

Concerning the development process for SOA a model-driven approach is commonly embraced. More
precisely, various approaches for the mapping of business processes to an SOA-based IT support have
been proposed [BM+04, KH+05]. Thereby, business processes are formally described in a notation which
allows the automated mapping to an execution language and the execution by a process engine. As these
kinds of execution language mainly facilitate the possibility for composing services in a process-oriented
way, the development is also referred to as programming-in-the-large [Le03]. In the web service context,
especially the Business Process Modeling Notation [OMG-BPMN] supports such a programming-in-the-
large by introducing an adequate metamodel for specifying executable business processes [EW+06]. In
case of BPMN, the abovementioned automatic mapping is already defined for the Business Process
Execution Language (BPEL) [OASIS-BPEL], which represents the most prominent execution language
for specifying executable business processes. Typically, an SOA has to support multiple business
processes, which currently are specified by means of several independent BPMN models.
In this scenario of model-driven SOA development there are two problems which we address in this
paper:

1. Due to the nature of SOA, particularly the atomic services are meant to be used in different

business processes. There is no SOA service model yet depicting the overall usage relationships
between business processes and services, while still supporting a process-oriented development.
Hence, we introduce a UML-based SOA service metamodel that allows an explicit design of
atomic and composite services along with the dependencies between them. This ensures
consistency of functional dependencies within the integrated SOA.

2. The services designed and implemented within the development process are eventually operated
and offered by a provider. At runtime several instances of one and the same service

2

implementation may exist. But so far, the modeling of relationships between the conceptual
service design and the corresponding instances at runtime is not explicitly supported. In
consequence, we extend our SOA service metamodel with deployment information, both for
atomic and composite services to establish this link between service design and deployment.

The paper is organized as follows: section 2 introduces our solution, the SOA service metamodel

consisting of the conceptual part, the deployable part and the formal definition as a UML profile. In
section 3 we present a process-oriented methodology for designing an SOA on basis of our metamodels.
The methodology is exemplified by means of a concrete scenario taken from the field of higher education.
Section 4 provides a comparison of our service metamodel in relation to existing approaches. A
conclusion and an outlook on future work in this area close the body of the paper.

SOA Service Metamodel

In this section our SOA service metamodel is introduced. This metamodel is supposed to allow a
comprehensive modeling of SOA, including atomic and composite services along with the components
implementing them. Furthermore, a distinction is drawn between a solely conceptual service model and a
deployable service model which extends the conceptual model by deployment-specific information, like
for instance the actual service endpoints. Figure 1 shows the conceptual part of the SOA service
metamodel.

Conceptual SOA Service Model

Figure 1: Conceptual Part of the SOA Service Metamodel

As stated before, within an SOA a general distinction is drawn between composite and atomic services.
Composite services use the explicit composition functionality of SOA. In the following we first present
the relevant concepts used to model both types of services.

The central element of our metamodel represents the Service. It provides a set of Service Interfaces
each of them consisting of Service Operations. This containment relation is strictly enforced. The
provision of Service Interfaces is modeled using the association providedServiceInterface. The usage
view on a service is defined via the signatures of its Service Operations and the corresponding Service
Messages which can be of type Request Message (incoming) or Response Message (outgoing). This is
modeled using associations between Service Operation and Service Message. In this way, Service

 3

Messages can be used both in different Service Operations and in different contexts: they can be Request
Messages for one Service Operation and Response Message for another Service Operation. As a
constraint, a Service Operation does either have to have a Request Message or a Response Message.
Additionally, a Fault Message can be defined for each Service Operation which is used if an error occurs.
Each Service Message consists of a set of Service Parameters; at least one has to be defined.

So far, we defined the external view on a service. The aforementioned elements do not describe the
Service’s functional part (i.e. the Service Providing Component) yet. This is why we put a n:1 association
between a Service and its implementation, the (abstractly defined) Service Providing Component. In case
of atomic services, this Service Providing Component is an Atomic Service Component, which basically
relates to a traditional component artifact. The previously introduced elements allow the modeling of
atomic services. Neither the specification of services composition nor the explicit modeling of
dependencies between the composite and the included atomic services is supported yet. For this purpose,
we introduce the Composition Component as a Service Providing Component that provides the
implementation for the composite service. Unlike atomic services, the composition service’s application
flow (i.e. orchestration) is implemented using explicit SOA composition technology. The required
information is held as the executable Orchestration Definition, for instance based on the Business Process
Modeling Notation or UML Activity Diagrams as defined in UML Superstructure [OMG-Super]. In order
to execute these definitions they have to be transformed to an executable language like BPEL, which are
then being deployed on a BPEL engine. Concerning the Service Interface, there are no considerable
differences between compositions and atomic services. Just as well, regular Service Operations are
provided. However, regarding long-running compositions [MM+07], for example, a Service Interaction
Protocol has to be additionally defined. This protocol is also referred to as the abstract process or
orchestration and defines the sequences of operation invocations. Note that atomic services may be
implemented as stateful services and therefore also require such a protocol specification [AC+04].

One essential feature of composite services represents the composition of already existing services to
more complex services. Thereby, the included services may be either atomic or composite. Hence, the
metamodel has to support the modeling of dependencies between service compositions and the included
services. For this purpose, we introduce the association requiredServiceInterface which allows the
linkage of a Composition Component with the required Service Interfaces. The Orchestration Definition
in turn refers to the imported Service Operations, in case of BPMN for instance within the scope of
embedded receive, reply or service tasks [EW+06].

Enhancing SOA Service Metamodel with Deployment Information

At this point, we are able to model atomic as well as composite services including the relationships
between them in a purely conceptual way. The services are fully specified regarding their offered
functionality along with the service providing components. However, in order to operate the services,
additional deployment information is required. In consequence, for each conceptually specified Service
there may be several Deployable Services. With the word “deployable” we express that the service model
comprises additional deployment-relevant information, but the services do not have to be actually
deployed yet. However, the deployment enhanced metamodel may form the basis for a corresponding
(operational) deployment model, parts of which could be generated automatically.

Figure 2 shows the extensions of the previously presented metamodel required for specifying
Deployable Services. The newly introduced elements extend their conceptual counterpart by deployment-
relevant information. Note that the associations shown in Figure 2 are actually inherited from the
conceptual elements, which – for the sake of clarity – are hidden in this diagram. A Deployable Service
Interface for instance inherits all features of the related conceptual service interface, but is extended by
the supported binding type and the service’s endpoint reference. Each specified deployable element is
associated with one distinct conceptual element via a designated association (e.g. hasConceptual).
Compiling a model of the deployable services several constraints apply depending on the used element.
These constraints do not only apply to the elements of the metamodel (M2 level according to the UML 4-
layer metamodeling hierarchy [OMG-Infra], but also on the instantiated models (M1 level).

4

Figure 2: Deployable Part of the SOA Service Metamodel

• On the M1 level, a Deployable Service Interface which is associated with a Deployable Service

has to comprise exactly the same features as the conceptual Service Interface belonging to the
associated conceptual Service. For example, a Deployable Service Interface has to offer exactly
the same Service Operations as the associated conceptual Service Interface on the M1 level. The
same applies for Deployable Atomic Services and Deployable Composition Components.

• In case of a Deployable Composition Component only Deployable Service Interfaces may be
included via the (inherited) association requiredServiceInterface.

• On the M1 level, for each conceptual Service Interface the corresponding Composition Component
includes via the association requiredServiceInterface, the respective Deployable Composition
Component requires exactly one Deployable Service Interface that corresponds to the included
conceptual Service Interface. For example, if a Composition Component “c1” requires a Service
Interface “s1” and there are two Deployable Service Interface for “s1”, namely “s1,1” and “s1,2”,
a corresponding Deployable Composition Component “dc1,1” requires exactly one of them.

Using this extension for the (conceptual) SOA service model we are able to bridge the gap between a

pure design model and an operational model. Furthermore, this approach conforms to the distinction that
is drawn between the abstract and the concrete part within WSDL [W3C-WSDL]. Accordingly, the
specified atomic Deployable Services hold all information needed for an automated generation of a fully-
fledged WSDL along with skeletons for the specific implementation. In case of composite services, the
specific BPEL deployment descriptor holding the binding information about the included partner’s
endpoints can also be generated via parsing all corresponding associations of type
requiredServiceInterface.

UML Profile

To be able to apply our service model in an UML-based software development process, it is a prerequisite
to define a UML-Profile deriving our concepts to metaclasses defined by UML superstructure [UML-
Super]. Thereby, we followed related approaches to SOA modeling and basically specified an extended
component model. According to Table 1, we regard all kinds of (Deployable) Service Providing
Components as specific types of components known from the UML metamodel. Thus, all the required
stereotypes in this case – directly or indirectly – extend the UML metaclass Component. The
(Deployable) Service itself extends the UML metaclass Port. As a service from an engineering point of
view is often defined as a software entity that offers functionality in a standardized way [Le03], we regard

 5

the semantics of the element Port as most suitable. But in contrast to the UML component diagram,
where several Ports may be attached to one Component, a Service Providing Component may only offer
one Service. A Service on the other hand may be comprised of several Service Interfaces, which in turn
offer several Service Operations. These stereotypes extend the corresponding UML metaclasses Interface
and Operation.

Stereotype in Service Model Extension of Metaclasses of UML

Superstructure
(Deployable) Service Port
(Deployable) Service Interface Interface
Service Operation Operation
(Deployable) Service Providing Component,
(Deployable) Atomic Service Component,
(Deployable) Composition Component

Component

hasConceptual, hasRequestMessage,
hasResponseMessage, hasFaultMessage

Association

providedServiceInterface Provided interface
requiredServiceInterface required interface
Service Interaction Protocol Sequence Diagram or Protocol State Machine
Orchestration Definition Activity Diagram or BPMN.BPD
Service Message, Service Message Parameter Class

Table 1: UML Profile for the SOA Service Metamodel

Due to the fact that a Service Operation in our case refers to different Service Messages, we did not
directly use the accordant UML metaclass. Consequently, we also had to define a new stereotype for
Service Interface, as this element may only provide such Service Operations. The same holds for the
newly introduced associations providedServiceInterface and requiredServiceInterface, which extend the
UML metaclasses provided interface and required interface. All the remaining custom associations are
derived from the UML Kernel metaclass Association. In contrast to these straightforward profile
extensions, for the elements Service Interaction Protocol and Orchestration Definition in each case
several feasible options are conceivable.

According to [Jo05] the Interaction Protocol may be specified through a protocol state machine offered
by UML. As an alternative to this approach, [BM+04] propose the employment of UML sequence
diagrams for this purpose. Within this paper we limit the scope to stateless services, which do not require
such an Interaction Protocol. A final decision in this matter is part of our future work.

The Orchestration Definition on the other hand may for instance be specified by means of UML
activity diagrams. So the stereotype would extend the UML metaclass Activity Diagram. Unfortunately,
activity diagrams are designed for a very general purpose. Unlike BPMN, the specific semantics of
orchestration models is not regarded. But if BPMN were used for modeling orchestrations, these models
could not be part of an integrated UML profile. Nevertheless, the different models could be synchronized
through adequate transformations. This would be rather complex approach. With the introduction of the
BPDM [OMG-BPDM] these discrepancies might be resolved. Therefore, a seamless integration of the
Orchestration Definition into our SOA service metamodel will be part of our future work. In this paper
we use models based on BPMN, which we created within scope of our preliminary work.

Process-Oriented Methodology for Developing an SOA

In this section we introduce a methodology for developing an SOA using our previously introduced
SOA service metamodel. To demonstrate that our solution can be applied we like to present an example
taken from a scenario as found at our university. Within an integration project the development and
establishment of a university-wide service-oriented architecture is aimed. This architecture is to support
business processes within the examination and course management in an integrated way and to provide a

6

study assistance system to students, which also integrates offered services. Figure 3 depicts two business
processes taken from the study assistance system which we will now explain in detail and use to
demonstrate our approach later. As we focus the service relationships we do not explicitly model the
exchanged service messages with service parameters.

Step 1: Identification and Modeling of Executable Business Processes

The first executable process in Figure 3 is named Get Transcript of Records and it enables a student to get
his/her personal transcript of records. The process comprises the following steps: first, the matriculation
status of the student is checked and core information like the name and address are returned. Second, the
examination results are fetched and finally the transcript is returned. The main service operations in use
are Get Matriculation Status and Get Examination Results.

Get Study Progress

Is student
matriculated?

Return
Error

Receive StuP
Request

Get
Matriculation

Status

Get
Examination

Results

Get
Examination
Regulations

Calculate
Study

Progress

Create StuP
Response

Get Transcript of Records

Return
Error

Create ToR
Response

Get
Matriculation

Status

Receive ToR
Request

Is s tudent
matriculated?

Get
Examination

Results

yesyes

yesyes

nono

nono

Figure 3: Examples of Fully IT-supported Processes

The second process Get Study Progress visualizes the progress the student has made with his/her
studies so far. The following operations are required: first again the matriculation status of the student is
checked in Get Matriculation Status. Next, two operations are executed parallel: the student’s
examination results and the examination regulations are fetched in Get Examination Results / Get
Examination Regulations. Finally the results are mapped according to the regulations and the progress is
calculated in Calculate Study Progress.

Step 2: Identification and Modeling of the Atomic Services

Having identified and modeled the executable processes, the next step comprises the identification and
modeling of the required atomic services. Within the process models we already pointed up the necessary
service operations. After equivalent operations have been identified, these consolidated operations have to
be grouped to services. This grouping can for instance be accomplished by creating a service for each
involved legacy system. If the services grow too large a further segmentation may be performed by means
of the process they support, the coarse-grained modules of an existing application they belong to, or along
the involved business objects in terms of Create, Read, Update and Delete (CRUD) operations [HZ05]. In
our case we mainly decided on the latter approach. Accordingly, for the business objects handled within
the processes, in particular “Student”, “Examination Result” and “Examination Regulation”, we defined
CRUD-like services. Additionally, a service for calculating the study progress is needed.

According to Figure 2, we assign these services to components and depict the corresponding service
interfaces. Here we start form atomic service self-contained components. The first component StudentDB
provides the service Student that offers service operations like Get Matriculation Status via the Service
Interface Student. The same applies do the next component ExaminationResultDB providing the service
operation Get Examination Results. Finally the component ExaminationRegulationDB is providing the

 7

service operation Get Examination Regulations and the component StudyProgressCalculator facilitates
the functionality to map the examination results of as student to the corresponding regulations.

Figure 4: Service Model of the Atomic Services

Step 3: Specification of Composite Services

In a next step these services are combined to composite services that implement the abovementioned
executable processes Get Transcript of Records and Get Study Progress.

Figure 5: Service Model for the Composite Services

As depicted above, for each defined executable process one Composition Component is created. As in
both cases reading access to (more complex) business objects should be provided, the CRUD- Service
Operations are offered through corresponding Services. The required atomic services are included via the
association requiredServiceInterface connecting the Composition Component with the corresponding
Service Interfaces. For the additionally needed Orchestration Definition, the already presented executable
process models are used and extended by the concretely included Service Interfaces or Service Operation
respectively. If the information on how the operations specified within the process models have been
merged and group was available, this step could even be fully automated.

Step 4: Specification of Deployable Services

The final step in the SOA service modeling represents the extension of the previously created
conceptual services by deployment information. As an example, Figure 6 shows the extended
(deployable) model for the atomic service ExaminationResult. Thus, for this one conceptually modeled
service, two Deployable Services should be offered. In consequence, different ServiceEndPoints are
specified for the two Deployable Service Interfaces. The Binding in both cases is set to SOAP. The
Deployable Atomic Service Components may be as well extended deployment-specific information, like
for instance the additional information required to generate an deployment descriptors for application
servers like BEA WebLogic, IBM WebSphere or Redhat JBoss AS. As one can observe, each deployable
element is connected with its corresponding conceptual element via the association hasConceptual. On
basis of this association, the two different models can be synchronized in case of changes, like for
instance the specification of a further Service Operation within the conceptual part. Note that the
specification of the synchronization algorithm is not in scope of this paper.

8

Figure 6: Deployable Service Model of an Atomic Service

Now, deployable versions of the composite services are created on basis of the deployable atomic
services. The following figure provides an example for this procedure and shows a deployable version of
the composite service TranscriptOfRecords.

conceptual
StuP-

Service
…

Deployable
StuP-

Service
… conceptual

StuP-
Service

…
Deployable

StuP-
Service

…

Figure 7: Deployable Service Model of a Composite Service

In this case, we introduce a Deployable Service named TranscriptOfRecords1 for the respective
conceptual composite service. According to the constraints defined within the metamodel, the
corresponding Deployable Composition Component only includes Deployable Service Interfaces by
means of the association requiredServiceInterface, in particular deployable versions of the services
ExaminationResult and Student. Within our sample scenario, a second deployable version of the service
ExaminationResult is linked to the deployable composite service StudyProgress. In doing so, a load
distribution is achieved.

Step 5: Mapping to BPEL

Using the process definition of Figure 3 we can automatically generate the relevant BPEL code. We
exemplary show this code for the TranscriptOfRecords-Service in Figure 8. Note that the displayed code
is fragmentary. Most of the attributes, variables and assigns are omitted for better readability. The
complete error handling is also left out.

 9

Figure 8: Generated BPEL Code for TranscriptOfRecords-Service

To execute a BPEL process a BPEL engine is needed which parses the BPEL code and executes the
contained instructions. Examples of existing BPEL engines are Oracle BPEL Process Manager and
ActiveBPEL by ActiveEndpoints. All engines have in common that the BPEL process, which has to be
deployed itself as well, needs to be supplemented. Of course the general BPEL code is always the same
regardless which BPEL engine is used because it is standardized. But in practice the deployable BPEL
packages differ from engine to engine. For instance, an engine-specific so-called deployment descriptor is
additionally needed in order to execute the process. Using our approach, we can automatically generate
the necessary deployment descriptors along with the required wrapper services, which extend the original
WSDL by BPEL-specific information about the provided partner links. The resulting files are illustrated
in Figure 9. Now the services can be automatically deployed and they are ready for use.

<BPELSuitcase>
<BPELProcess id="ToRService" src="ToRService.bpel">

<partnerLinkBindings>
<partnerLinkBinding name="client">

<property name="wsdlLocation">ToRService.wsdl</property>
<property name="location">http://localhost:1234/orabpel/ToRService</property>

</partnerLinkBinding>
<partnerLinkBinding name="StudentServicePL">

<property name="wsdlLocation">services/StudentServicePWrapper.wsdl</property>
</partnerLinkBinding>
[...]

</partnerLinkBindings>
</BPELProcess>

</BPELSuitcase>

<definitions […]>
<import location="http://localhost:8080/axis/services/StudentServiceP?wsdl"/>
<plnk:partnerLinkType name="StudentServicePLT">

<plnk:role name="StudentServicePTProvider">
<plnk:portType name="tns:StudentServicePT" />

</plnk:role>
</plnk:partnerLinkType>

</definitions>

DEPLOYMENT-DESCRIPTOR (ToRService)

WRAPPER-WSDL for StudentService

Figure 9: Generated Deployment Descriptor and WrapperWSDLs for ToRService

10

Competitive approaches including comparison with selected approach

In the following we present other research initiatives that focus model-driven approaches for the
development of services. The OASIS Reference Model for Service-Oriented Architecture [OASIS-SOA]
is rather a guideline for the creation of a SOA model than a formal metamodel and thus cannot be used by
itself for modeling SOA. The Object Management Group (OMG) currently tries to put together different
efforts. Therefore they issued the request for proposal “UML Profile and Metamodel for Services”
[OMG-UPMS]. As the submission date mid of June 2007 is not over yet, the OMG so far cannot provide
a standardized approach. There are some approaches which define quite easy metamodels for the
development of web services by simply creating a UML profile for WSDL. Examples of this category are
[MC+03] and [JL+05]. A more comprehensive approach which provides additional modeling capabilities
is provided by IBM [Jo05]. In Table 2 the description elements of the WSDL profile approaches and the
IBM approach are compared with the proposed service description metamodel's description elements of
this paper.

For the comparison the WSDL description elements are used in the notation of WSDL version 1.1.
These description elements are basically all covered by our SOA service model. Only the Service
Parameter in fact comprises several WSDL description elements. More precisely, the Service Parameter
needs to provide means for describing the Types definitions referenced by Elements that in turn are
subsumed to WSDL Part. As it extends the UML metaclass Class, the Elements can be mapped to the
Service Parameter's attributes and the Types definition to the attribute type and its definition. Considering
this information, the proposed SOA service model is WSDL compliant.

Concerning IBM’s service model, our model covers the majority of modeling elements. Therefore,
only the differences are discussed here. The Message Attachment is one modeling element of the IBM
model that is not explicitly treated by the proposed service model. If this concept is required, it may easily
be included into the Service Parameter, which offers a certain degree of flexibility due to its inheritance
of the UML metaclass Class. Furthermore, the IBM service model introduces the modeling elements
Service Consumer, Service Partition, Service Gateway and partially Service Provider, which are not
included in our service model.

WSDL IBM Service Model [Jo05] Our Service Model
Service Service
Port Service ServiceEndPoint
Binding Service Channel Binding
Porttype Service Specification Service Interface
Operation Operation Service Operation
Message
- input
- output
- fault

Message
-
-
-

Service Message
- hasReqestMessage
- hasResponseMessage
- hasFaultMessage

Part -
Element -
Types -

Service Message Parameter

- Message Attachment -
- Protocol Service Interaction Protocol
- Service Collaboration Orchestration Definition

- Service Provider Service Providing
Component

- Service Consumer -
- Service Partition -
- Service Gateway -

Table 2: Comparison WSDL / IBM / Own Approach

 11

These modeling elements particularly serve the purpose to support an IBM-specific security model.
The basic idea thereby is to assign the services to virtual organizational units (Service Partitions). The
intersection between these Service Partitions is realized using so called Service Gateways. As there are
other security models that do not require such a partitioning into virtual organizational units, this aspect is
not treated within the proposed service model yet. An adequate extension for our service model that also
allows the modeling of security-related aspects will be part of our future work.

In summary, the introduced SOA service model covers all relevant aspects of the IBM service model
as well as WSDL. In addition, it allows us to draw a distinction between abstract and concrete services
and enables modeling the dependencies between services of both kinds.

Current Status and Next Steps

In this paper, we presented a first step towards a comprehensive SOA service metamodel enabling model-
driven development of both atomic and composite SOA services. It allows the explicit design of service
composition and ensures consistency of functional dependencies within an integrated SOA design.
Additionally, it helps bridging the gap between the service model and the business process model as wells
as the service’s implementation and eventually the deployment model by enriching our SOA service
metamodel with deployment information for both atomic and composite services.

However, there are still some remaining issues that are not addressed so far. For instance, the seamless
integration of the orchestration definition is not fully solved yet. The employment of BPMN certainly is a
feasible approach, but it also causes difficulties regarding the synchronization with the UML-based
models. In consequence, we would prefer the integration of BPDM, which at least is build on parts of the
UML metamodel. To support a fully automated transformation we furthermore aim at an OCL-based
formalization of the presented constraints and the QVT-based specification of transformations of the
services along with the service providing components to WSDLs as well as skeletons of the implementing
classes. Finally, we plan to enhance our SOA service metamodel by cross-cutting concerns like identity
management and process management. This should allow integrating these aspects in the same model-
driven way. Hence, we will extend our SOA service metamodel with the additionally needed elements.

References

[AC+04] G. Alonso, F. Casati, H. Kuno, V. Machiraju: Web Services – Concepts, Architectures and
Applications, Berlin, Heidelberg, Springer-Verlag 2004.

[AH+03] van der Aalst, Wim M. P.; ter Hofstede, A. H. M.; Weske, M.: Business Process Management: A
Survey. In: Lecture Notes in Computer Science Band 2678. Springer-Verlag, Berlin, 2003,

[BM+04] Bernhard Bauer, Jörg P. Müller, and Stephan Roser: A Model-Driven Approach to Designing
Cross-Enterprise Business Processes, University of Augsburg, 2004.

[Er04] Thomas Erl: Service-Oriented Architecture: Concepts, Technology and Design, Prentice Hall
PTR, ISBN 0-13-185858-0 August 2004

[EW+06] Christian Emig, Jochen Weisser, Sebastian Abeck: Development of SOA-Based Software
Systems – an Evolutionary Programming Approach, IEEE Conference on Internet and Web
Applications and Services ICIW’06, Guadeloupe / French Caribbean, February 2006.

[HZ05] Henkel, M., Zdravkovic, J., "Approaches to Service Interface Design", Proceedings of the Web
Service Interoperability Workshop, First International Conference on Interoperability of
Enterprise Software and Applications (INTEROP-ESA'2005), Hermes Science Publisher, Geneva,
Switzerland, 2005.

[JL+05] Jiang J, Lipponen, J., Selonen, P. & Systa, T. UML-Level Analysis and Comparison of Web
Service Descriptions. Ninth European Conference on Software Maintenance and Reengineering
(CSMR'05), 2005.

[Jo05] Simon Johnston: UML 2.0 Profile for Software Services, IBM develperWorks, April 2005.
http://www-128.ibm.com/developerworks/rational/library/05/419_soa

[KH+05] J. Koehler, R. Hauser, S. Sendall, M. Wahler: Declarative techniques for model-driven business

12

process integration, IBM Research Division, Zurich Research Laboratory, 2005.
[Le03] Frank Leymann: Web Services - Distributed Applications without Limits, Business, Technology

and Web, Leipzig, 2003
[LR+02] Frank Leymann, Dieter Roller, M.-T. Schmidt: Web Services and business process management.

In: IBM Systems Journal (2002) 41, S. 198-211, 2002.
[MC+03] Esperanza Marcos, Valeria de Castro, Belén Vela: Representing Web Services with UML: A Case

Study, In Service-Oriented Computing - ICSOC 2003, pages 17-27, Springer Berlin / Heidelberg.
[MM+07] Christof Momm, Robert Malec, Sebastian Abeck: Towards a Model-driven Development of

Monitored Processes, 8. Internationale Tagung Wirtschaftsinformatik (WI2007), Karlsruhe,
Februar 2007.

[OASIS-BPEL] Organization for the Advancement of Structured Information Standards (OASIS): Web Services
Business Process Execution Language (WSBPEL), Version 1.1, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel .

[OASIS-SOA] OASIS Reference Model for Service Oriented Architecture, Committee Specification 1, August
2006. http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

[OMG-BPDM] OMG:Business Process Definition Metamodel, Januar 2004.
[OMG-BPMN] OMG: Business Process Modeling Notation (BPMN), Version 1.0, BPMI.org, February, 2006.
[OMG-Infra] OMG:UML 2.0 Infrastructure Specification, OMG Adopted Specification ptc/03-09-15,

September 2003. OMG
[OMG-Super] OMG: Unified Modeling Language: Superstructure version 2.0 formal/05-07-04, OMG,

http://www.omg.org/docs/formal/05-07-04.pdf, August 2005
[OMG-UPMS] OMG Request For Proposal: UML Profile and Metamodel for Services (UPMS), OMG

Document: soa/2006-09-09. http://www.omg.org/docs/soa/06-09-09.pdf, 2006.
[Ry03] Arthur Ryman: Understanding Web Services, IBM Technical Article, July 2003, http://www-

 128.ibm.com/developerworks/websphere/library/techarticles/0307_ryman/ ryman.html
[W3C-WSDL] W3C: Web Services Description Language (WSDL), version 1.1, http://www.w3.org/TR/wsdl,

May 2001.

